Higgs Physics at CEPC

arXiv: 1810.09037

中國科学院為能物品術完所 Institute of High Energy Physics Chinese Academy of Sciences

Xin Shi

On behalf of CEPC White Paper Group

2019.01.21

IAS Program on High Energy Physics 2019

Introduction

- The discovery of a Higgs boson in 2012 by ATLAS and CMS opened a new era in particle physics
- Subsequent measurements of the properties indicate Standard Model (SM) Higgs boson
- However, the SM does not predict the parameters in the Higgs potential.
 - Vast difference between the Planck scale and weak scale remains a major mystery
- Precision measurements of Higgs boson properties will be a critical component of any road map for high energy physics in the coming decades.

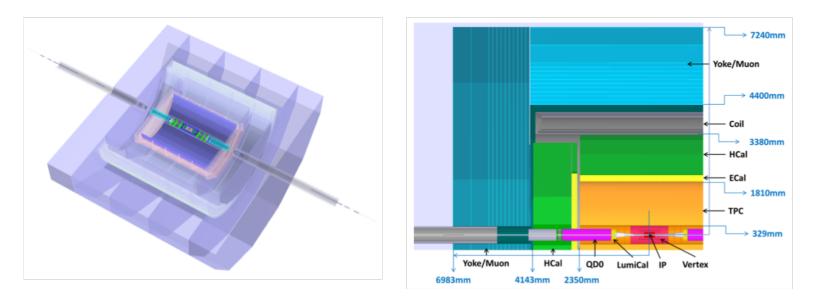
New Physics beyond the SM

Deviations in the Higgs couplings from the SM expectations.

$$\delta = c \frac{v^2}{M_{\rm NP}^2}$$

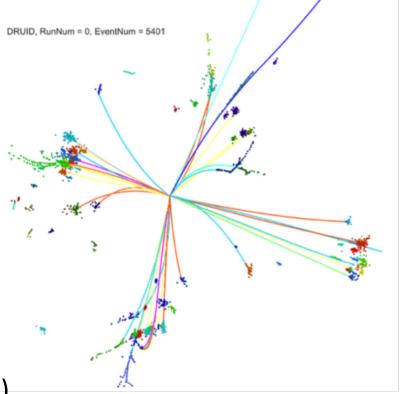
v: vacuum expectation value of Higgs field

M_NP: Typical mass scale of new physics

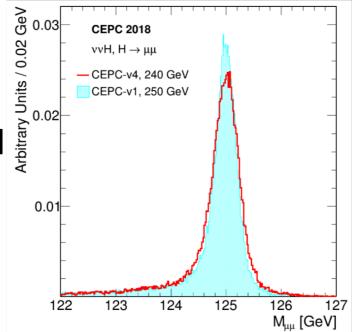

- The HL-LHC will measure the Higgs boson couplings ~5%.
- Probing new physics significantly beyond the LHC reach require ~% level of Higgs coupling measurement.
 → Need for Higgs factory.

The Circular Electron-Positron Collider (CEPC)

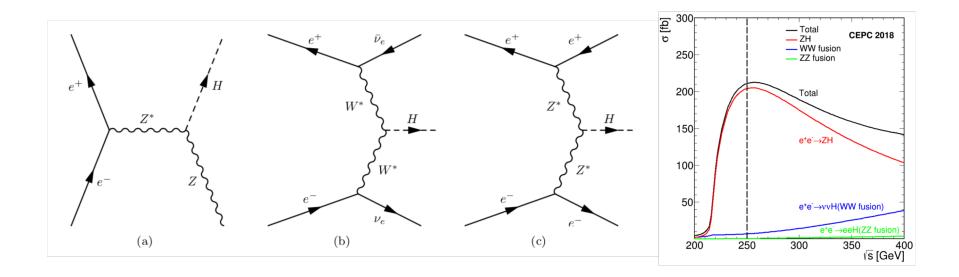
- 100 km circumference
- Center-of-mass energy ~240 GeV
- Higgs production : $e+e- \rightarrow ZH$, recoil mass method
- Expected int. lumi: 5.6/ab, 1M Higgs
- Higgs coupling to Z \sim 0.25%
- Invisible decay ~ 0.3%
- Model independent measurement of Higgs width


CEPC Detector Concept

- Higgs factory √s = 240 GeV 7 yrs → 1M H, 1B Z, 100M W
- Z factory \sqrt{s} = 91.2 GeV \rightarrow 10¹¹ 10¹² Z bosons
- WW threshold scans ~ $\sqrt{s} = 161 \text{ GeV} \rightarrow 10^7 \text{W}$


Object reconstruction and identification

- ARBOR particle flow
- Leptons
 - 7% H production with leptons
 - Lepton ID algo: LICH eff 99.9%
 - Dimu mass reso. 0.16%
- Photons
 - H2 gg and H2Zg
 - Tau leptons and jets
 - Mass reso. 2.5%
- Jets
 - 70% H decay into jets (bb, cc, gg)
 - 22% through WW,* ZZ* cascades
 - JES: 3-5%, W and Z: 4.4%.

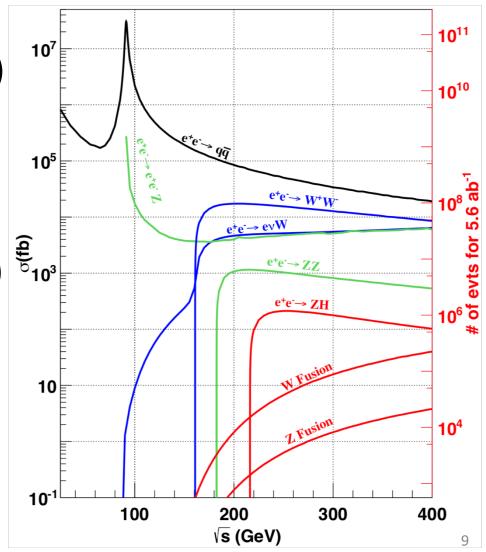


CEPCv4 and optimization

- Smaller solenoidal field 3T (14% degrades of momentum reso.)
- Reduced calorimeter dimensions
- ECAL readout sensor size changed from 5x5 to 10x10 mm²
- Add Time-of-Flight for flavor physics potential

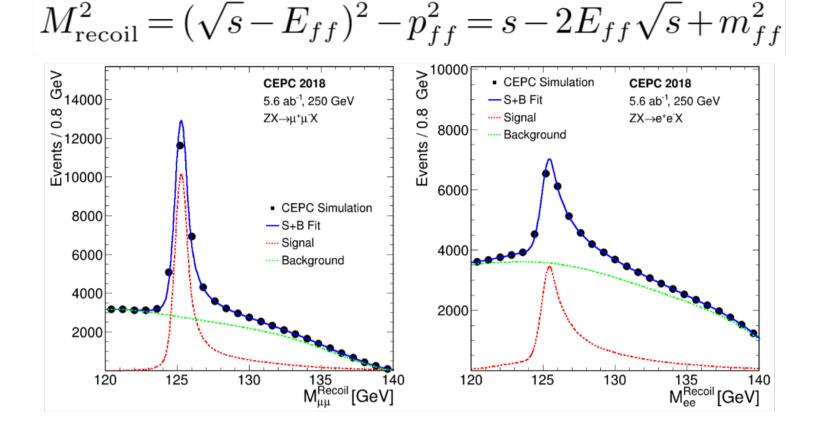
Higgs production and decay

ZH associate production


W fusion

Z fusion

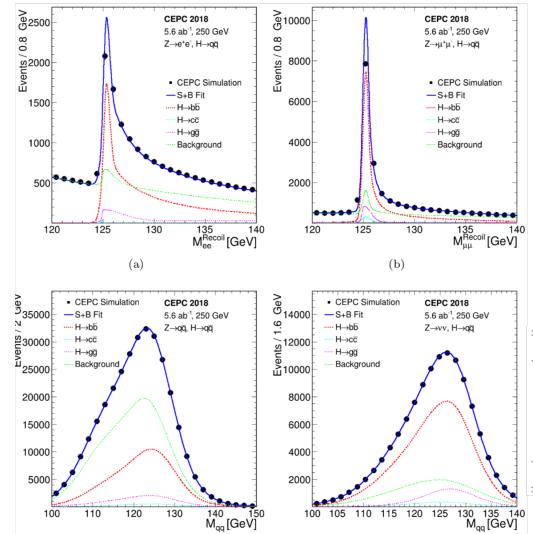
Vector-boson fusion (VBF)


Background processes

- Bhabha scattering (ee)
- ISR return (Z gamma)
- Diboson (WW/ZZ)
- Single boson production (eeZ, evW) ^(f)/₅₁₀₃

Higgs tagging with recoil mass

 Higgsstrahlung(ee->ZH), Z decays to a pair of visible fermions(ff), the recoil mass against the Z:


Measurements of $\sigma(ZH)$ and m_H

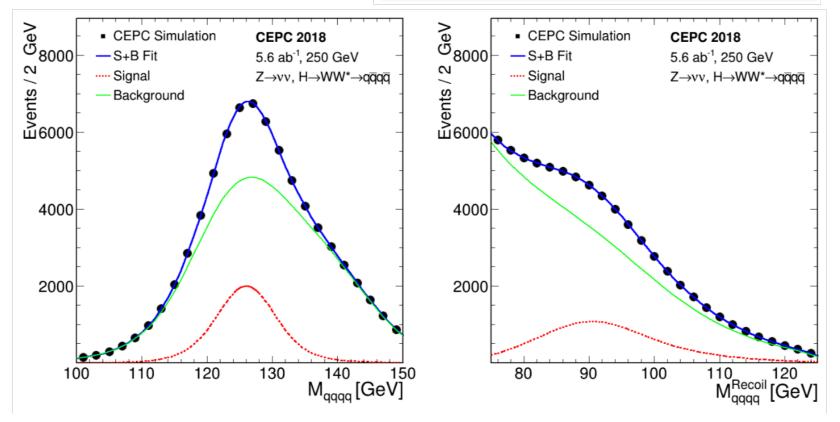
• $e^+e^- \rightarrow Z + X \rightarrow |^+|^- /qqbar + X$ to extract ZH production cross section and Higgs boson mass m_H

e^+e^- 14 1.43% $\mu^+\mu^-$ 6.5 0.86% $q\bar{q}$ - 0.61% Combined 5.9 0.5%	TH)	$\Delta\sigma(ZH)/\sigma(ZH)$	$\Delta m_H \; ({\rm MeV})$	Z decay mode
$q\bar{q}$ – 0.61%		1.43%	14	e^+e^-
		0.86%	6.5	$\mu^+\mu^-$
Combined $5.9 0.5\%$		0.61%	—	qar q
0.070		0.5%	5.9	Combined

Individual Decay Modes

H -> bb/cc/gg

70% of Higgs decay to a pair of jets: b (58%) c (3%) g(9%)

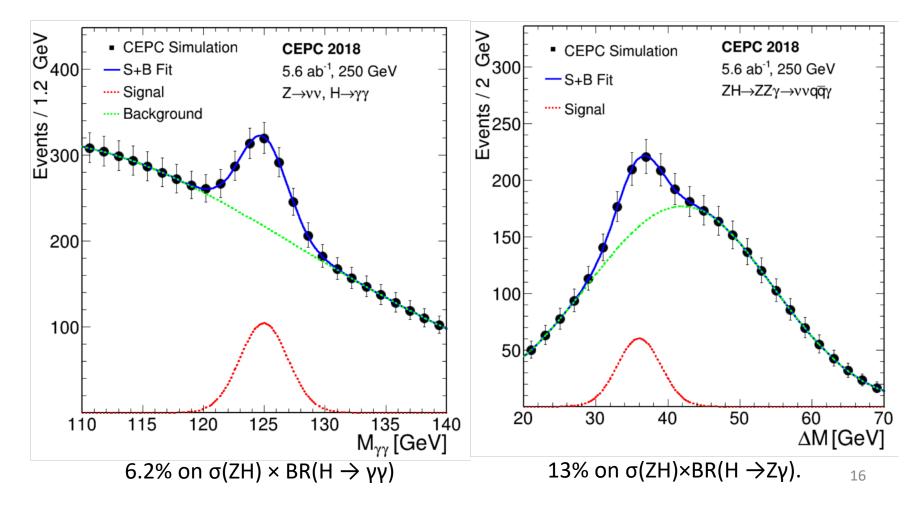

Expected relative precision on $\sigma(ZH) \times BR$

Z decay mode	$H \mathop{\rightarrow} b \bar{b}$	$H \mathop{\rightarrow} c \bar{c}$	$H\!\rightarrow\!gg$
$Z \! \rightarrow e^+ e^-$	1.3%	12.8%	6.8%
$Z\!\rightarrow\!\mu^+\mu^-$	1.0%	9.4%	4.9%
$Z \mathop{\rightarrow} q \bar{q}$	0.5%	10.6%	3.5%
$Z \mathop{\rightarrow} \nu \bar{\nu}$	0.4%	3.7%	1.4%
Combination	0.3%	3.1%	1.2%

$H \rightarrow WW^*$

• BR 21.5%

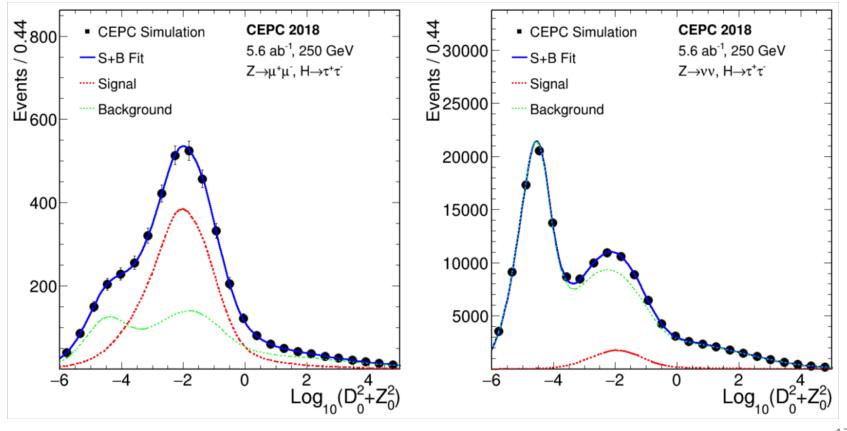
	ZH final state	Precision
$Z \rightarrow e^+ e^-$	$H \! \rightarrow \! WW^* \! \rightarrow \! \ell \nu \ell' \nu, \ell \nu q \bar{q}$	2.6%
$Z {\rightarrow} \mu^+ \mu^-$	$H \mathop{\rightarrow} WW^* \mathop{\rightarrow} \ell \nu \ell' \nu, \ell \nu q \bar{q}$	2.4%
$Z \to \nu \bar{\nu}$	$H \mathop{\rightarrow} WW^* \mathop{\rightarrow} \ell \nu q \bar{q}, q \bar{q} q \bar{q}$	1.5%
$Z {\rightarrow} q \bar{q}$	$H\!\rightarrow\!WW^*\!\rightarrow\!q\bar{q}q\bar{q}$	1.7%
	Combination	0.9%


$H \rightarrow ZZ^*$	Z_{\perp}	H final state	Precision
	$Z {\rightarrow} \mu^+ \mu^-$	$H {\rightarrow} ZZ^* {\rightarrow} \nu \bar{\nu} q \bar{q}$	7.2%
	$Z \mathop{\rightarrow} \nu \bar{\nu}$	$H {\rightarrow} ZZ^* {\rightarrow} \ell^+ \ell^- q \bar{q}$	7.9%
	C	ombination	4.9%
• BR 2.6%			

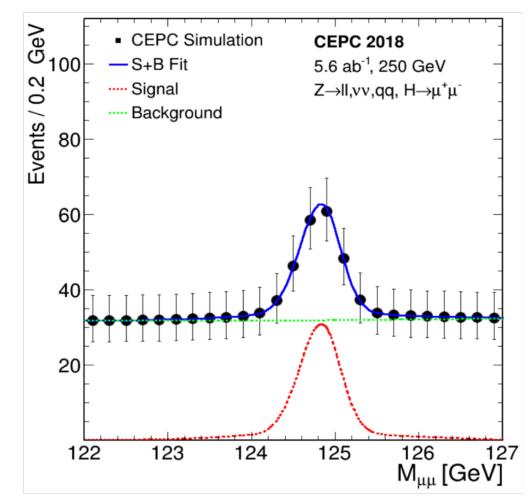
>ə 50120 GeV CEPC Simulation **CEPC 2018 CEPC 2018** -S+B Fit 5.6 ab⁻¹, 250 GeV 5.6 ab⁻¹, 250 GeV Events / 0.8 Events / 2 40 ····· Signal $Z \rightarrow \nu \nu$, $H \rightarrow Z Z^* \rightarrow \mu^+ \mu^- q \overline{q}$ $Z \rightarrow \mu^{+}\mu^{-}, H \rightarrow ZZ^{*} \rightarrow \nu \nu q \overline{q}$ ····· Background 80 CEPC Simulation 30 -S+B Fit 60 ---- Signal ····· Background 20 40 10 20 $M_{\mu\mu q \overline{q}}^{140}$ [GeV] 125 $\begin{array}{ccc} 135 & 14 \\ M^{\text{Recoil}}_{\mu\mu} [\text{GeV}] \end{array}$ 120 130 110 120 130 140 100

 $H \rightarrow \gamma \gamma$, $H \rightarrow Z \gamma$

• BR 0.23%


• BR 0.15%

H -> τ τ

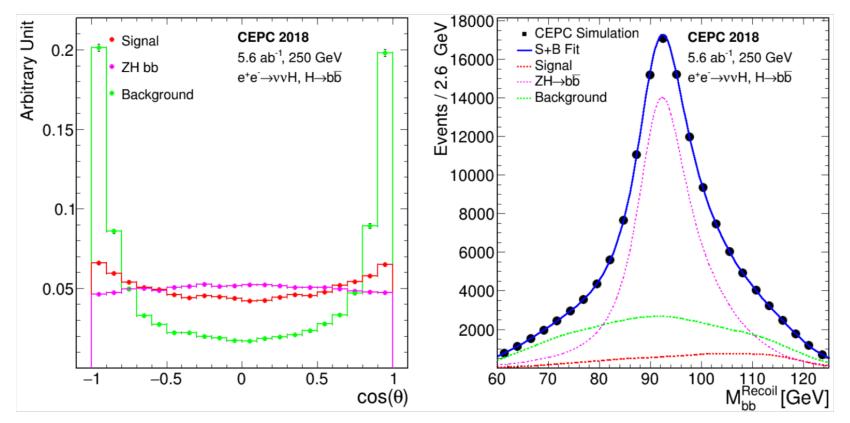

• BR 6.3%

ZH final state		Precision
$Z \to \mu^+ \mu^-$	$H \rightarrow \tau^+ \tau^-$	2.6%
$Z\!\rightarrow\!e^+e^-$	$H \! \rightarrow \! \tau^+ \tau^-$	2.7%
$Z \mathop{\rightarrow} \nu \bar{\nu}$	$H \rightarrow \tau^+ \tau^-$	2.5%
$Z {\rightarrow} q \bar{q}$	$H \! \rightarrow \! \tau^+ \tau^-$	0.9%
Combination		0.8%

Η -> μ μ

• BR: 2x10⁻⁴

Precision: σ (ZH)xBR(H-> $\mu\mu$) ~ 16%


Higgs -> Invisible

• BR (H->ZZ*-> vvvv) 1x10⁻³

ZH f	inal	Relative precision	Upper limit on
state st	udied	on $\sigma \times BR$	$BR(H \rightarrow inv)$
$Z \rightarrow e^+ e^-$	$H \rightarrow \mathrm{inv}$	339%	0.82%
$Z \rightarrow \mu^+ \mu^-$	$H \rightarrow \mathrm{inv}$	232%	0.60%
$Z \mathop{\rightarrow} q \bar{q}$	$H \rightarrow \mathrm{inv}$	217%	0.57%
Combin	nation	143%	0.41%

Measure $\sigma(ee \rightarrow vvH)xBR(H \rightarrow bb)$

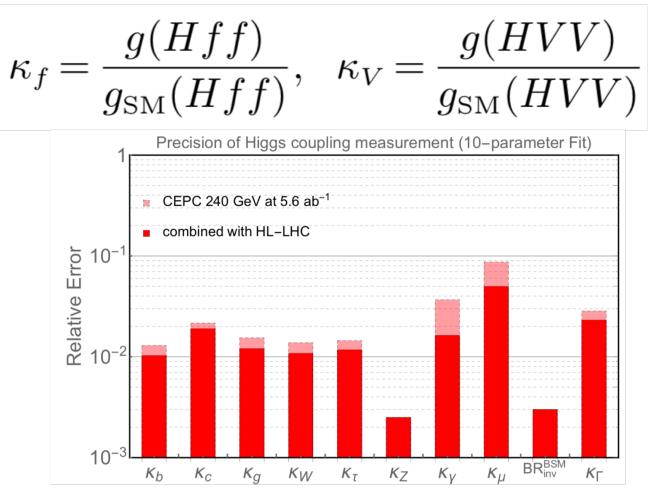
• W-fusion, 3.3% of ZH process, precision 2.6%

Combinations of Individual Measurements

Combine $\sigma x BR$

	Estimated Precision			
Property	CEF	PC-v1	CEP	PC-v4
m_H	5.9	MeV	5.9	MeV
Γ_H	2.	7%	2.8	8%
$\sigma(ZH)$	0.	5%	0.	5%
$\sigma(\nu\bar{\nu}H)$	3.	0%	3.1	2%
Decay mode	$\sigma \times \mathrm{BR}$	BR	$\sigma \times \mathrm{BR}$	BR
$H \mathop{\rightarrow} b\bar{b}$	0.26%	0.56%	0.27%	0.56%
$H {\rightarrow} c \bar{c}$	3.1%	3.1%	3.3%	3.3%
$H \rightarrow gg$	1.2%	1.3%	1.3%	1.4%
$H \mathop{\rightarrow} WW^*$	0.9%	1.1%	1.0%	1.1%
$H\!\rightarrow\! ZZ^*$	4.9%	5.0%	5.1%	5.1%
$H{\rightarrow}\gamma\gamma$	6.2%	6.2%	6.8%	6.9%
$H{\rightarrow}Z\gamma$	13%	13%	16%	16%
$H\!\rightarrow\!\tau^+\tau^-$	0.8%	0.9%	0.8%	1.0%
$H{\rightarrow}\mu^+\mu^-$	16%	16%	17%	17%
$\mathrm{BR}^{\mathrm{BSM}}_{\mathrm{inv}}$	_	$<\!0.28\%$	_	< 0.30%

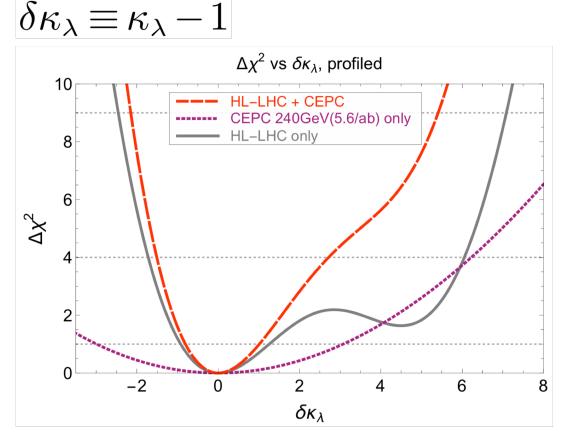
Measurement of Higgs boson width

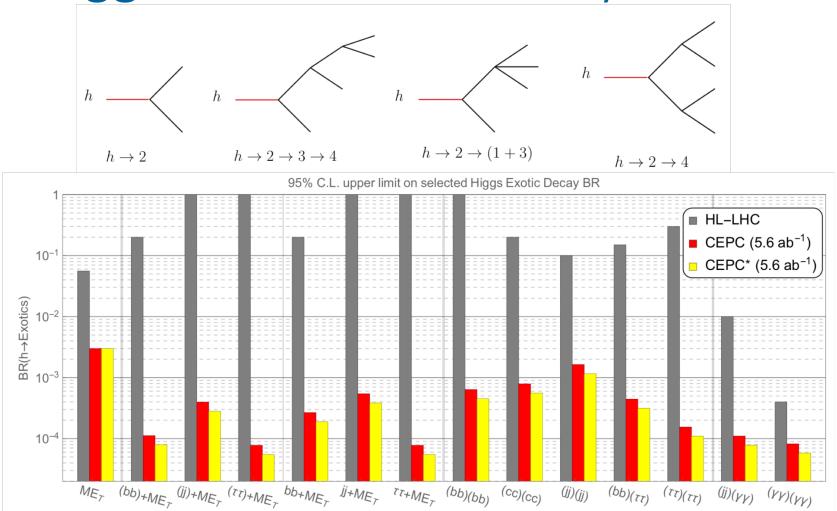

$$\Gamma_{H} = \frac{\Gamma(H \to ZZ^{*})}{\mathrm{BR}(H \to ZZ^{*})} \propto \frac{\sigma(ZH)}{\mathrm{BR}(H \to ZZ^{*})} ^{\sim 5.1\%}$$

$$\Gamma_{H} = \frac{\Gamma(H \to b\bar{b})}{\mathrm{BR}(H \to b\bar{b})} \propto \frac{\sigma(e^{+}e^{-} \to \nu_{e}\bar{\nu}_{e}H)}{\mathrm{BR}(H \to WW^{*})}$$

~3.5%

Higgs coupling measurements


• Coupling fits in the κ-framework


Higgs boson self-coupling

$$\kappa_{\lambda} \equiv \frac{\lambda_3}{\lambda_3^{\rm sm}} \,, \qquad \lambda_3^{\rm sm} = \frac{m_H^2}{2v^2}$$

New Physics

Higgs boson exotic decays

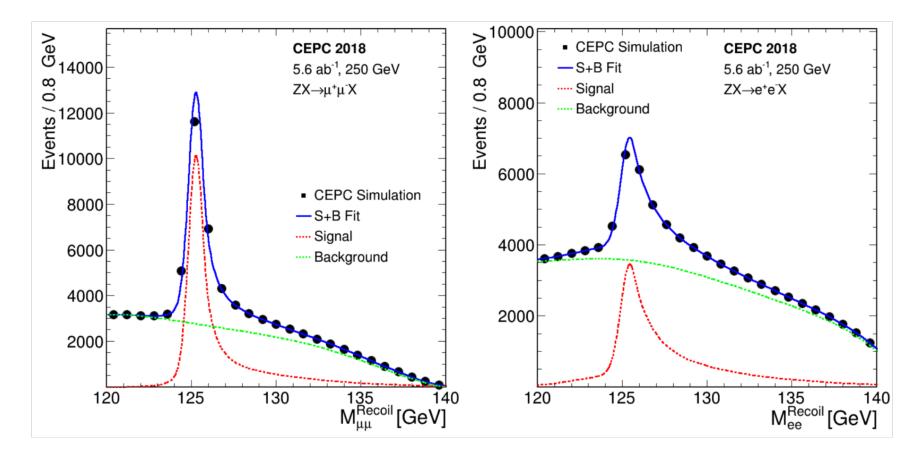
* yellow bars include extrapolation with the inclusion of the Z hadronic decay

Summary

- The discovery of Higgs at LHC is a major breakthrough on both experiment and theory.
- The CEPC complements the LHC to study the Higgs in great detail with unprecedented precision.
 - Measure Higgs total width and decay BRs in a modelindependent way
- The clean environment of the CEPC will allow the identification of potential unknown decay modes that are impractical to test at LHC.

Backup slides

CEPC operating scenarios


Operation mode	Z pole	WW threshold	Higgs factory
$\sqrt{s} \; (\text{GeV})$	91.2	161	240
Instantaneous luminosity $(10^{34}\mathrm{cm}^{-2}\mathrm{s}^{-1})$	16 - 32	10	3
Run time (year)	2	1	7
Integrated luminosity (ab^{-1})	8-16	2.6	5.6
Higgs boson yield	_	_	10^{6}
W boson yield	_	10^{7}	10^{8}
Z boson yield	$10^{11} - 10^{12}$	10^{9}	10^{9}

Higgs production and other SM processes @ 250 GeV

Process	Cross section	Events in 5.6 ab^{-1}		
Higgs boson production, cross section in fb				
$e^+e^- \rightarrow ZH$	204.7	1.15×10^6		
$e^+e^- \rightarrow \nu_e \bar{\nu}_e H$	6.85	$3.84\!\times\!10^4$		
$e^+e^- \rightarrow e^+e^-H$	0.63	$3.53\!\times\!10^3$		
Total	212.1	1.19×10^6		
$e^+e^- \rightarrow e^+e^-(\gamma)$ (Bhabha)	cesses, cross sectio 850	4.5×10^9		
$e^+e^- \to q\bar{q}(\gamma)$	50.2	2.8×10^{8}		
$e^+e^- \rightarrow \mu^+\mu^-(\gamma) \text{ [or } \tau^+\tau^-(\gamma)]$	4.40	$2.5 imes 10^7$		
$e^+e^- \rightarrow WW$	15.4	$8.6 imes10^7$		
$e^+e^- \rightarrow ZZ$	1.03	$5.8 imes10^6$		
$e^+e^- \rightarrow e^+e^-Z$	4.73	2.7×10^7		
$e^+e^- \rightarrow e^+\nu W^-/e^-\bar{\nu}W^+$	5.14	$2.9 imes 10^7$		

30

$Z \to |^+|^-$

Selection entirely based on the info of two leptons, independent of Higgs BR.

SM predictions of Higgs Decay

Decay mode	Branching ratio	Relative uncertainty
$H \rightarrow b\bar{b}$	57.7%	+3.2%, -3.3%
$H \rightarrow c \bar{c}$	2.91%	+12%, -12%
$H \rightarrow \tau^+ \tau^-$	6.32%	+5.7%, -5.7%
$H \to \mu^+ \mu^-$	2.19×10^{-4}	+6.0%, -5.9%
$H\!\rightarrow\!WW^*$	21.5%	+4.3%, -4.2%
$H \mathop{\rightarrow} ZZ^*$	2.64%	+4.3%, -4.2%
$H \mathop{\rightarrow} \gamma \gamma$	2.28×10^{-3}	+5.0%, -4.9%
$H \mathop{\rightarrow} Z\gamma$	$1.53 imes10^{-3}$	+9.0%, -8.8%
$H \mathop{\rightarrow} gg$	8.57%	+10%, -10%
Γ_H	$4.07 { m ~MeV}$	+4.0%, -4.0%